Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
BMC Med ; 19(1): 255, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1448233

ABSTRACT

BACKGROUND: This study aims to identify the causative strain of SARS-CoV-2 in a cluster of vaccine breakthroughs. Vaccine breakthrough by a highly transmissible SARS-CoV-2 strain is a risk to global public health. METHODS: Nasopharyngeal swabs from suspected vaccine breakthrough cases were tested for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) by qPCR (quantitative polymerase chain reaction) for Wuhan-Hu1 and alpha variant. Positive samples were then sequenced by Swift Normalase Amplicon Panels to determine the causal variant. GATK (genome analysis toolkit) variants were filtered with allele fraction ≥80 and min read depth 30x. RESULTS: Viral sequencing revealed an infection cluster of 6 vaccinated patients infected with the delta (B.1.617.2) SARS-CoV-2 variant. With no history of vaccine breakthrough, this suggests the delta variant may possess immune evasion in patients that received the Pfizer BNT162b2, Moderna mRNA-1273, and Covaxin BBV152. CONCLUSIONS: Delta variant may pose the highest risk out of any currently circulating SARS-CoV-2 variants, with previously described increased transmissibility over alpha variant and now, possible vaccine breakthrough. FUNDING: Parts of this work was supported by the National Institute of Allergy and Infectious Diseases (1U19AI144297) and Baylor College of Medicine internal funding.


Subject(s)
COVID-19 , SARS-CoV-2 , BNT162 Vaccine , COVID-19 Vaccines , Humans , Immune Evasion
2.
PLoS One ; 16(8): e0244468, 2021.
Article in English | MEDLINE | ID: covidwho-1371999

ABSTRACT

The newly emerged and rapidly spreading SARS-CoV-2 causes coronavirus disease 2019 (COVID-19). To facilitate a deeper understanding of the viral biology we developed a capture sequencing methodology to generate SARS-CoV-2 genomic and transcriptome sequences from infected patients. We utilized an oligonucleotide probe-set representing the full-length genome to obtain both genomic and transcriptome (subgenomic open reading frames [ORFs]) sequences from 45 SARS-CoV-2 clinical samples with varying viral titers. For samples with higher viral loads (cycle threshold value under 33, based on the CDC qPCR assay) complete genomes were generated. Analysis of junction reads revealed regions of differential transcriptional activity among samples. Mixed allelic frequencies along the 20kb ORF1ab gene in one sample, suggested the presence of a defective viral RNA species subpopulation maintained in mixture with functional RNA in one sample. The associated workflow is straightforward, and hybridization-based capture offers an effective and scalable approach for sequencing SARS-CoV-2 from patient samples.


Subject(s)
COVID-19/pathology , SARS-CoV-2/genetics , Sequence Analysis, DNA/methods , COVID-19/virology , DNA, Complementary/chemistry , DNA, Complementary/metabolism , Gene Frequency , Genetic Variation , Genome, Viral , Humans , Open Reading Frames/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL